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BUCKLINGOFTHIN-WAlXZDCYLl3DERlJXDERJKiXG 

COMIIIESSION AXD IIVTERNAL F 

By Hsu Lo, Earold Crate, and E&-d B. Schwartz 

An investigation was m3de of a thin-walled cylinder under axial 
compression and various internal pressures to study the effect of the 
internal preesure on the compressive buckling stress of the cylinder. 
A theoretical analysis based on a large-deflection theory was also made. 
The theoretically predicted increase of compressive buckling stress 
due to internal presrsure agrees fairly well with the experimental 
results. 

The buckUng of thin-walled cjrlFnders under axial compression 
lateral pressure has been tivestigatftd by FhYgge (reference 1) who 

JXLBODUCTION 

found. that the effect of the internal pressure on the buckling load is 
negligible. Fltigge'B conclusion is Fn contradiction to the results of 
a series of tests, made at the Langley AeronauticalLabor&tory of the 
NACA,, of two curved panels under vial compression and various lateral 
pressures. These test results, reported in reference 2, showed ag 
apprecfable strengtheni$ effect of the lateral pressure on the buckling 
load of the curved panels. The apparent discrepancy between these 
experimental results and the prediction by FhYgge's -theory made it 
desirable to investiete this problem further. Cons?quentlyj additional 
tests were made of a cylinder under axial compression and various 
internal pressures for which results are presented herein. A theoretical 
analysis of this problem is also presented which differs from that of 
Fltigge in th@t the present analysis is based on large, rather than small, 
deflection theory. 

. 
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APPAxATlTsANDPROC~ .-- 

Test-specimen.- TheLspec.imen used for the tests was a cylinder, 
32 inches long with a 15-inch inside radius, made of 2&S-T aluminum 
alloy sheet of 0.0249"inch average thickness. It--was closely riveted 
around two heavy steel rings, one at each end. The butt-joint of the 
two longitudinal edges was covered both inside and outside by straps, 

0.032 inch thick and ii inch wide, along the total length of the cylinder. 
(See fig. 1.) 

The two heavy steel rings were made.of r- by b-inch steel bar stock . 
rolled to the diameter of the cylinder. Two2& by 2iinch spreader bars 
were used to reinforce the ring as shown in figure 1. A ring with a 

flange, machined flat, was fastened to-the $- by 44.nch steel ring to 

provide aneven bearing surface on which a steel cover plate was fitted. 
Three steel blocks were placed on top,of the plate. ?The applied 
compressive load was transmitted from the machine head through the three 
steel blocks to the cover plate, The joint belqeen..I&e cylinder and the 
cover plates was sealed. . - 

Equally spaced along the inside.circumfe.rence of theecylinder at 
midlength were 16 strain gages, anddirectly opposite to them on the 
outside were 16 more gages. These gages were placed to measure strains 
in the longitudinal direction. Six more gages, three inside and three 
outside, were placed to measure the circumferential strains. 

Test procedures.- The specimen was subjected to-compressive load 
in the 1,2CO,OOO-pound universal testing machine of-&he Langley 
structures research laboratory. Compressed air was u8ea to produce 
internal pressure, which could be maintained at any desired constant 
value. The pressure was measured by a manometer. The strains were 
recorded by standard electric strain-gage equipment and the end- 
shortening was measured by dial gages. 

The cylinder was preloaaed end the strain:gage readings were 
taken. The three steel blocks were so adjusted thatall longitudinal 
strain-gage readings around the circumference of. the--cylinder were equal. 

The compressed air was then let into .the..cylinder until the 
desired internal pressure was reached. The axial compressive load 
was increased in increments until buckling was observed. At each load 
increment, all gage reaciings were recorded, The loa& was then decreased 
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until the buckles disappeared + increasada second time to check.the 
reading obtaFned the first time. During all these steps the internal 
pressLlm3 wag maintained constant. 

The axial load was then reduced and the internal pressure was 
changed to another value. For each value of titernal pressure the same 
procedure wae repeated. 

A typical experimental-result is sham Fn figures 2(a) and 2(b) 

for the case in which the internal pressure was l$ psi. In figure 2(a) 
the compressive load. is plotted against the strain-gage readLugs for 
four different pair5 of gages, within the range where the load-strain 
relation is linesz. .In figure 2(b) th 8 strati-gage reading is plotted 
for all strain gages at three compressive loadings close to the buckling 
load. Figure 2(b) indicate5 that buckling OCCUTS at a compressive load 
of 12,700 pound5 between strain gages 22 and 23. (Note the intersection 
of the curves at two consecutive loadings.) A buckle at this location 
was observed during the test. The compressive load at which this 
phenomenon occurs is considered the buckling load. 

Since the buckling occurs locally and not simuLLtaneou5ly at all 
the gages, the local buckling strain is obtained by dividing the budding 
load by the slope of the linear portion of the load-strati curve corre- 
sponding to the gage at which the buckling occurs. The corresponding 
stress is the buckling stress. The buckling s~tresses.for various 
Internal pressures were determked in this same way. 

The results are tabulated ti table 1 end plotted in figure 3 in 
terms of the two nondImensiona parameters 

O"cr R 
ucr =E; 

where a%, is the buckling stress, p is the internal pressure, R is 
the radius of the cylinder, t is the wall thickness, and E is ' 
~0~'s m0aulu5. Except for the first test corresponding to jj = 0.1028 
in which the cylzlnder had undergcxne no previom buckling, all the tests 
were carried out on the cylinder with possible permanent set. 
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THECJRETICAL RESULTS :- '- 
;--a I_ 

. 
A theoretical analysis for calculating the buck&zing stress. of a _ 

cylindrical shell underaxial compression and internal pressure was 
obtained by a "large-aeflection" theory for which details are given -: 
in the appendix,. The large-deflection theory was first advanced by 
Von E&m& and Tsien:(reference 3) in the study of buckling stress of - 
cylindrical shells under axial compression (but without internal 
pressure). This theory was subsequently improved by Leggett and Jones --*i 
(reference 4). In reference 3 the buckling stress was shown to depend 
on whether the load was applied by a rigid loading machine or by a 
dead-weight machine. In the present analysis, the loading machine is 
asmmed to be-rigid. -. 

The -existing procedure5 for com$utation of the @@LLing stress by 
large-deflection theory involve the solution offourBi.multaneous .I 
nonlinear equation% for each pressure loading. The *erical work 
is quite lengthy. The method used in the present study introducea a- . I 
fifth equation which govern% the condition% at which the buckling - 
occLlr5. The fifth equation 18 based on consideration of conservation 
of energy,, which is an extension of Tsien's buckling criterion given , 
in reference 5. Although a solution of five simultaneous equations .- 

is now necessary, the numerical work is actually reduced to a snail 
fraction of that required if the existing procedures were used. This 
reduction-in labor is made possible through a proper,choice of the param- 
eters in the equation%.and the process of the computations. The result5 _ ..LG 
calculated by the present method are presented in table 1 s+d sre - 

represented by the solid-line curve in figure..3. Thg curve is cut off z!E 
at a value of %cr = o. 605, co~esponding to. jj 2 0. $9. This co-tit 

0.605 for i; > 0.169 is the same~that is obtained by 
-. 

value of- %cr = :. 
the classical theory. _ - 

DISCUSSION AND CONCLUSIOIPS '-. -- 

From the theoretical and experimental results shown in figure 3, 
the internal pressure is seen to have an appreciable strengthening effect 
on the cylinder. Although the two curves obtained from theoretical 
and experimental results do not coinclde.both show the same trends 
as regards the effect of internal pressure on the buckling stresses. , ./ 
If the increment of the buckling stress ABcr due to the presence _- -e--. .i 
of internal pressure (that is, the difference between-the buckling 
stress with the pressure b,, and that without the pressure (5 cr); = 0) 
is .plotted against the internal pressure, as ahown in figure 4, a good 
agreement is obtained between the..theoretical and experimental results. 
These data indicate that, although further improvement of the theory 

- 
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is necessary for the determination of the magnitude of the compressive 
buckling stress, the theory giqes a fairly good prediction of the 
increase of coaprassive bucklir$ stress that may be expected as a result 
of internal pressure. The dfscrepancy between the theoretical curve 
and the experimental curve of figure 3 is believed to be caused by such 
factors as manufacturing imperfections in the specimens, material 
irregularities, and energy absorbed by the loading machine, which have 
not been included in the theory. 

Lsngley Aeronautical Labora& 
National Advisory Committee for Aeronautics 

Langley Air Force Ease, Va. 

. 
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APPENDIX 

TBEORETICALAIULYSIS OFBUCKLINGLOAB OF CYL~ICAL SHELLS r 

lJI'XDER AXIAL COMI?RESSION AND IlIXW&E PRYhWRE BY 

LARGE-BEEIECTION TBEORY 

Background of-Theory - 

The use of large-deflection theory for shells $der axial compression 
was first advanced by Von K&m& and Tsien (reference 3) in an attempt 
to explain the discrepancies between the buckling loads predicted by - 
classical theory and those obtained from experimental'results. (See .- 
for in5tance, reference 6.) The results of reference 3 indicated that 
cylindrical shells can be maintained in equilibrium~tn the buckled 
stati by a compressive load considerably lower than that predicted by -_. 

classical theory. A plausible explanation-of this ~esult~is that, before -. 
the classical buckling load is reached during a test, the cylindrical 
shell 'jumpsW from an equilibrium unbucklea,atate toan equilibrium 

, 

buckled state. The physical phenomena of. the jump 6re further examined 
.- 

in reference 5 by Tsien. A 
.- 

The treatment .of Von E&&n and Tsien in refe-ce 3 was lef'i- .- 
incomplete, however, in that the equilibrium positio:ns at the buckled 
state were determined by differentiating the total potential energy -7 
with respect to some but not all of the physical @wetera involved. 
The resulting equation% gave a relation between theaverage compressive 
stress u and the.end-shortening 6 in terms of the remaining ps.ramet5rs. 
A set of curves of c against B were thus obtained for various -. 
combination% of the remaining parameters. - - - 

Improvement of Von K&&&n and Tsien's theory wa5 made by Leggett 
and Jones (reference 4), who took the derivatives of the energy with -. 
res-pect-to all the parameters and thus obtained a single curve -.. 
between u and 6, representing all equilibrium posjtions of the 
cylindrical shell in the buckled state. The same result was obtained 
by Michielsen (reference 7) in a similar proces-s. Such a.curve is shown 
by BC of figure 5. .: 

Theoretically, when the cylinder is compres%ed,.the relation - -. 
between u and 8 follows-the straight line ODA which represents 
the unbuckled state and will reach the point A if evhrything is perfect; 
the cylinder then buckles and the relationship folloW the curv-e ABC 
which represents the buckled state. Before point A is reached, however, 
some external disturbance may possibly cause the cylinder to jump from __- 

1 - 
s 
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the unbuckled state represented by the point-D to the buckled state 
represented by the point E. The position5 of D and E on the respective 
curves depend on the actual physical condition% of the jump. . 

If the physical condition which govern5 the jump is known or 
defined, the buckling stress correspondinn to the point D c&z1 be 
obt%Lned directly without going through the labor of finding the curve 
ABC. This procedure csn greatly reduce the amount of numerical work. 

In reference 5, Tsien introduced a criterion which governs the 
jump DE for the condition of loading obtained in a rigid testing machine, 
namely, that the strain energy remains the same before and after the 
jump and that the jump occurs'at constant end-shortening. According 
to this criterion the line DE must be vertical and must cut the curve 
ABin such awaythatthe two ahadedareas ADGandGBE are equal. In 
fact, the area ADG represents the additionsl energy that is needed to 
assist the cylinder in jumping from a condition represented by D to that J-; 
represented by G and the area GBE represents the energy that is given :*. l .- ;’ 

up by the cylinder when it arrives at the[lowerlenergy level, point E. :,:-+-T.-J 
i 

The energy represented by the area ADG is very small, and therefore .L : +'- 
a slight disturbance from the surrounding air might assist the cylinder 
to jump from the unbuckLed state to the bucklea state at a compressive 
stress well below the classical buckling stress corresponding to point A. 

Since the external disturbance is required to assist the cylinder 
to jump from the state corresponding to D to that corresponding to G, 
a slightly larger external disturbance csn well cause the cylinder to 
make the transition from the state represented by D' to that represented 
by B, except that in the case in which the cylinder jumps from D' to B 
the cylinder absorbs the energy of the external aisturbance and does not 
reemit it. The buckling stress can be then as low as point D'. This 
fact was pointed out by Tsien in reference 8. 

In addition to the twa criterion% just mentioned, there are still 
others that might be used. In view of the fact that the choice of the 
buckling criterion is a much less important factor in the determination 
of buckling stress than are such other factors as, for example, the 
initial imperfections, Tsien's criterion of reference 5, as represented 
by the line DE, is as reasonable as any other, and the choice of this ~ 
criterion greatly simplifies the numerical work. 

Tsien's criterion of reference 5 cannot be applied directly to the 
present an%Lysia, ho-ever, because with the presence of the internal 
Pressure the strain energy is no longer the same before and after the 
jump. In addition, the criterion is applied herein in quite a different 
manner from that of reference 5. In reference 5, a series of values of 
wave number n and aspect ratio $ were chosen and the criterion was 
applied to each pair of values of n snd B; the pair of values of n 
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and B which gave the minimum value of buckling load was considered to 
correspond to the buckling condition. .In the present analysis, since t&I 
variation of CT with 6 can be plotted only as a single curve, this 
criterion need be applied only once foreach internal pressure. The 
results correspond to the minimum-potential-energy condition. 

In the derivation of the present analysis, .the_basic equation5 in 
reference 3 are first extended to include-the effect of internal pressure, 
Tsien's criterion governing the jump for rigid.machine loading 
(reference 5) is modified, and the buckling stress is fin3lly obtained. 

-. 1 
- _ 

Symbols 

A list of-symbols follows. Most of the symbols used in the present 
paper are the same as those in reference 3; exceptions are the use 
of P for Poi5son'5 ratio, X for w&v8 length, snd B for aspect ratio 
of the buckled waves. 

xa half wave length in longitudinal direction ..- 

half wave length in circumferential direction .' 

fo, fit f2. . _ parameters used in defl3ction~function 

m number of waves in longitudinal direction within 
length equal to circumference of cylinder 

n number of waves in circumference 

P internal pressure 

t thickness of cylinder wall - 

X9Y coordinates measured in longitudinal and 
circumferential directions, respectively .; 

Li component of displacement of a point on median 
surface of shell in x-direction 

W component of displacement &_a point on median 
surface of shell in radial direction - 

a measure of average circumferential stress per 
wave length in longitudinal direction 

6 end-shortening of cylinder 
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B1, ?2, -*- B6 

Bl', B2',... B6' 

Dlt D2,--. D5 

(D), = $ 

(D)p = B $ 

R 

wl 

w2 

w3 

wP 

-. 

-. 

NACA TN 2021. 9 

average compressive stress - 

aspect ratio of buckled w&ves 

Poi88on'5 ratio 

total potential energy 

Young's modulus 

strain energy 

certain functions of B 

certaFn function5 of p and B 

(D represents the functions Dl, D2,... D5) 

(D represents the function5 Dl, D2,... D5) 

radius of cylinder 

elastic exbensional energy 

bending energy 

work done by applied compressive load 

work done by internal pressure 

. 

Nondimensional parameters: 
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Subakripte: 

0 

U 

cr 

pertaining to-buckling condit_ion ; 

unbuckled state jus+prior ta buckling 

buclrling condition .- 

Darivation of Basic Equations 

Three basic equations are de&.ved in the following analysis tr- 
include the effect of internal pressure. Th0y are t&e expression for 
the total potential energy, the expression.f~r the, s&rain energy, and 
the relation between the end-shortening and the average compressive 
stress. 

In order to calculate-th-total potential energy, the work done by -. 
the internal pressmze should be included in additionto the energies Wl, 
W2, and W3, which are given-by equations (25), (262, .and (27) of J 
reference 3 asi 

" gtxakb = 4-[1 - p2j(;)2 + n4(&f12 + $flf2 1.3~~3~ +-- 

(& &)2 - a?(&2 + &flfL.. &22)(fg + p;)] + 
Aa - 

B2 4 P 
+ -+ + (lP;;2)2 + (1 +:;32 + (g8FP2)2 + 

J34* 1 16(1 + 132)~ 
(1) 



. 
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(1 + &+)flf2 + (1 + 84)f22 
I 

(2) 

g--& = [2(1 - P2)($ + n2 $P + P@fY + $jflf2 + +22) - 

2+0 +‘4 1 lf 

( II 
(3) 

where a, b, i.r, t%Ild v have been Changed to ?v,, hb, B, ati P, 
respectively, to agee with the notation of the present paper and where 

A =-@12n2 -($f1 +f2) 

The work done by the internal pressure is, for a complete wave panel, 

Xa s s Lb 
wp = -4 Ye-as 

0 0 
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The negative sign is introduced became thezadial deflection 
considered positive inward. 

If the same deflection furiction given in equation (16) of 
is used, that is, 

2 CO8 = + COB 2JiXi 4 i R R ) 

the work done by the internal pressure becomes 

Wp = -L,pRxaxb 

If the total potential enera 

PI= w, + w2 - w3 - wp 

W 

TN 2021 
-. . 

m' 
iS 

reference 3 - 

+ 

(4) 

- 

(5) 

is differentiated with respect to f. a&the derivative is set equal 
to zero, the followin@; ex$ression is obtawd 

(6) 

* Subatltute this expmssipn into equations (l), (2), (3), and (5) for W,, 
W2, w3, and wp, respectively, and the following equ@tions are obtained:,. - 

wl = 4p,’ + 2y)(EB) + (q] +-- T --- 3 th,hb 
4 + a-&f2 + B3f12f22 + B&flF23 + - 

n2[(2B4 + &)f$ + (4B4 + $)f12&j +- 

p4 $)f12 +&f, ++f22] - (7) 
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B5f12 + B6flf2 + Bsf2 

& = 4[+$)2 + 2i-$$($$ + $)n2P2($f12 + flf2’+ f2’)] (9) 

32ahb = 8[(E)2 + qz)($E) - n@)%(#Y + flf2 + f22)] (10) 

P4 p4 

(1 + & + (1 + 9Pv 
.a4' 

(9 + Jw” I 

where 

1-3 

(8) 

+A+ 
(1 -I- gp2)2 

B3 

84 p4 B4 
(1 + p>2 + (1 + gp2)2 +Jg + I p2)2 

p4 
B4 = Q (1 + p2)2 

B5 = f pq2 + $1 + a4> 
I 

Bg= IL (1 + 84) 
60 - a21 , 

. 
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Equations (7) to (10) may be expressed in terms of the nondimensional 
parameters 8, z, p,- T, f, and W as 

Gj, = + 7j2f4D2 + I-&~(- D3) + 5%4 (11) -:- 

iT2 = qell~ . . (=9 

f?3 = 832 + 8&i + 6r&2Dl (13) 

where 

Dl = $P’($ +P+P 2 

D2 = Bl + %P + B-y2 -I- B4p 3 + $B4p4 2 
-2 

D3 = (234 ++(l + 20) 

D4 = (a4 + 5) + Q(P -+ p’.’ 

D5 = B5 + B~(P + p2) 

.- 

The nondimensiotil total-potential-energy parmete.?: J is 

$= w, -t w2 - a, - Pp 

= - 4(a2 + 2~3f1 + 5") - 

?eD2 - 753D3 + t2D4 + q2c2D5 (15) 
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The nondimensional strain-energy parameter P is 

= 4(8 + 2pa5 + 52) + 1254D2 - 
I 

tlf3D3 + t2D4 + q2 t2D5 

The relation between the end-shortening E and the average compressive 
stress can be determined from equation (23) of reference 3 by integrating; . 
thus, 

s 

ha 
6 = -1 au dx 

xa ax 
0 

++ G) +3q&2 cf22 +f1f2) 

where ab, as determined from 
with equation (6) herein is 

equation (24) of reference 3, together 

Therefore, the relation be.tween E' and ,d Fn nondimensional form 
becomes 

(17) 
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Eqmtio- (151, (161, asd (17) are for cyl&ders in the buckled state. :. 
For cylinders in the unbuckled state, the corresponding equations are 

gu = -4(Zu2 +- 2~qjl + $2) (18) 

ljiu = 4(&2 + 2pbu9 + 52) (19) 

Equilibrium Positions of Cylinders in Buckled State 

The equilibrium positions of cylinders Fn the &ckled state can 
be obtained by differentiating the total potential energy of equation (15) 
with respect to each of the parameters 7, c, P, and B and by setting 
the derivatives equal to zero. Four simultaneous, nxmlinear equations 
are thus obtained: 7 

- 2(qS)2D2 + (?C)D3 - 

- 2(qk’)2D2 + l.S(&D3 - D4 - v2D5 (2f) 
I 

g = o = -[(z - $)v(D~)~ - (T&~(D~), + (&(D& - (D4Jp - 

~~0)~)~ c2 1 
33 
ap ?(D& - h5)2(D2), + 

(D41p - 'I~(D~+ p2 + %rlDl p 1 E 

. 



: 
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where 

and 

Bl' = 

B2' = 

B3’ = 

B4’ = 

17 

(D-J, = $P2(1 + 2P) 

(D2) p = B2 + 2B3P + p4P2 + =4p3 

(D3), = +4 + &) 

(D4)p = $1 + 2p) 

(D5)p = B& +'2P) 

(Dljp = 82 2 + p + p2 
( 1 

= 2D1 

(D2)p = Bl' + B2'p + B3'p2 + B4'p3 + $34'~~ 

(D31a = =4’0 + 2~) 
. 

(D4) p = !2B4’ 

(D5)p = B5’ + B6'(P + P2) 

p4 

+ (1 + 9w 
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B5' = 1 - Gq1+3P) 
6(1 - p2) 2 

B6' = 4 -' P4 
60 - ~2) 

Let-- .--- ..- 

u = a -1 
( > 

- $5 npl 

The four simultaneous equations (21) become .: 

5' = (~f)~(2D2) - (qc)D3 + 2$D5 (224 

u -' = ($J2(m2) - (rlf)(l.5D3) + D4 + q2D5 (22b) 
. L 

f (D& + JIGS & 
1 

(22c) 
P 

(D4+ + q2(D5)@ + - -$Pl 1 (22a 
~I 

Theoretically these four simultaneous equations~kan~be solved for i, 
5, p, and P in terma of d for a given pressure; U-they are 
substituted into equation (17), a relation between-end-shortening E' 
end the compressive fltrees 6 is obtained which represents all 
equilibrium positions.at the buckled state. IIn fa&, this solution 
is essentially that obtained by Leggett and Jones (reference 4) and 
Michieleen (reference 7) for cylinders with axial compression but no 
internal pressure. -7 

Practically, however, the solution of the four-simultaneous 
equations (22) requires a long and tedious numerical. process. If only 
the buckling'stress is required, calculation-of only one poin-kon 
the curve of r3 against Z rather than the whole curve ie necessary. 
This solution can be obtaFned by the Introduction crf one more equation 
which governs the condition at buckling. 

3 
- 

_- 

? 

.- 
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Buckling Criterion 

19 

I In reference 5, Tsien gave the following criterion which governs 
the condition at bucklAng: That the strain-enera of the buckled 
cylinder is the seme as the strain energy of the unbuckled cylinder 
when the cylinder Is tested in the rigid testing machine so that the end- 

shortem does not change during buckling. This criterion is apparently 
established from considerations of conservation of energy. Although 
other physical criterions can be.used (for 3nstence, see reference 8), 
the criterion of reference 5 was chosen and extended to include the case 
for which the internal pressure is present. The choice of this criterion 
simplifies the numerical work. 

When internal pressure is present in the cylinder, work is done by 
the pressure during buckling. The strain energy in the buckled state 
is no longer equal to that in the unbuckled state, but 

fr = qu + tip (23) 

where AI? p is the work done by the pressure 
or t 

durFng buckling, 

(24) -- 

Equation (14) can be rearranged as follows: 

wP - = 8(B2 + p6J) - +,c2Dl 
P2 

(25) 
. 

Therefore, for the unbuckled state, the last term is eliminated end 

<cp,, = 8($ + p5,~) l-26) 

Then, from equations (&), (25), and (26) 

(27) 



. 
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..= 
The buckling criterion becomes (equations (23) and .(27)) 

iJ = & + &@(5 - Q) - -+C2Dl 
P2 

or, from equations (16) ati (lg), 
- -. 

4($ + 2~55 + 52) + q2C4D2 - 7$3D, e J2D4 + q25?D5 

= 4&2 + 2clauc + g2) + 8(ti - 5,>p$ - L5q~2Dl 
P2 (28) 

Since the end-shortening remains unchanged durin@; buckling, that is, 
E' = cur the following relation is obtained from equations (17)'and (20). 

uu = ii + +c2D ' 
8 1 

-- .- - 
If this reiation is substituted in equation (28) and-if the reLtion 

.- 
is used, the buckli~ criterion becomeS. 

5’ = (91)‘(n, - +y2) - (3)D3 + D4 + i2D5 (30) -. 

The solution of the five equations (22a), (22b), (22c), (22d), and (30) 
gives the buckling stress for a given internal pressure. The fo~oWin@; 
section presents a very simple method for the solution of these five 
simultaneous equations. - 

Method of Solution -T :: . 

From equations (22b) and (30) and equations (224 and (22b), the 
f~~owing equation6 are obtained: 

Tf = 
D3 

2(D2 + +12) 
(31) 

72 = 
D4 - $3(?f) 

D5 
' (32) 
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For a preassigned value of /3,,assume vario-ds values of p and 
compute ?lc and ?j 2 from equations (31) and (32). Substitute these 
values in equations (22a) end (22%). to obtain (z')a and (z')c, 
respectively. Plot both (B'), and (a'), against p. The intersection 
of these two curves detervnkes a pair of Value6 5' and p which'are 
called "lo and po. The corresponding (~c)~ and (q2)o are computed 
and BUbBtitUttZd In equa.tion (22d) from which the pressure p canbe - 
calculated. For each assigned value of f3, there are obtained 
corresponding values of Ufo and 5. A curve of Zro again& ij 
c&z1 thus be determined. If the following relations are used, 

Scr =-(&Jo = Z. + $qc2Dl), 

the relation between (Jcr asd 5 iB obtained as shown in figure 3. 

cut-off Buckling SfXeBB 
l 

When equation (31) is derived from equations (22b) and (30), a 
factor (~0 = 0 is also obtained. E this relation ia used instead 
of equation (3l), it ten be shown that the buckling stress %r 
can never ekeed the classfcal buckling stress 0.605 which is tidependent 
of pressure. 

a 

. 
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TABLEi 

BUCKLIHGSTRESSFiSFOR VARIOUS -wsuREs 

. 

23 

Experimental Theoretical 

5 a =X 5 5 &cr 

0 0.1936 0 0 0.376 0 
.017c! .252 .058 .02 .444 .068 

.a03425 -277 .083 .04 .480 .104 
.0514 l 309 .7-16 .06 .506 .130 
-0685 

:g 
.156 .OS .528 .152 . 

-0856 .170 .lO .171 
.1028 .407 .2X3 .12 

:;:; 
.18g 

.14 -581 .205 

v 
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Figure l.- Test epecimen and strain-gage positions. 
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Strain-gage readings 
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Lhear part af load-strain curve far 
strain gagea. 

fOW? ty-pical pairs of 

Figure 2#- Typical expel'imental result. Internal preesure, 1; psi. 
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2,J8’ 3,1’9’ 420 5,2/ 422 723 4 25 14~26 8,z+ 1427 J2,28 /3,24 IQ0 1x31 

Strain-gage poeltlona 

(b) Close to buckling load. 

Figure 2.- Concluded.. 
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0 

0 

Calculated results 

@ Fxperimental result, first test 

0 Fxperimental results, subsequent tests 

Figure 3.- Comparison of theoretical and experimental results of the 
buckling stress at various internal presaree, 
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Theoretical resulta 

@ Experimental result, first test 

0 Experimental resulte, subsequent tests 

h 

Figure k.- Theoretical and experimental results showing the increment 
of buckling stress due to internal pressure. 
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Figure 5.- Relation between the average compressive stress u and the 
end-shortening 6. 


